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ABSTRACT 
 
 
Benzerrouk, Hamza.M. 
Modern Approaches in Nonlinear Filtering Applied to Aerospace Integrated 
Navigation Systems with Non-Gaussian noises 
Saint Petersburg: Saint Petersburg State University, 2014, 49 p.(+included articles) 
Saint Petersburg State University Studies in Mathematics, Vol. 4 
ISBN 978-5-288-05530-0, ISSN 2308-3476 
 
In integrated navigation systems, the problem of data fusion from multiple sensors is a 
challenging problem and the methods involved to solve such complex problems are 
based on Kalman filtering theory and its nonlinear variants algorithms. The challenges 
in this field are how to obtain the best estimation accuracy and stability of the 
mathematical methods used in solving state estimation problems, especially in denied 
measurement environments. Mathematically, this leads with solving the problem of 
nonlinear estimation in the presence of non-Gaussian noises and then needs new 
formulations of the previous and modern approaches in nonlinear filtering algorithms, 
with also the proposal of novel approximations of the lower bounds of estimation. In 
the linear estimation problems with white Gaussian noises in the system and the 
measurement, Cramer Rao Lower Bound CRLB is well known to be the optimal lower 
bound of estimation, however if the noises are correlated or are non-Gaussian, the 
mathematical problem becomes more complex and all well know techniques and 
methods in the Gaussian space are transformed into robust or adaptive forms. This 
dissertation work is devoted to such severe conditions of noises where measurements 
are assumed affected by non-Gaussian noise, especially Gaussian mixture density. 

The second part of this contribution is a practical such as in many applications 
of autonomous navigation; Unmanned Aerial vehicle UAV or Unmanned Marine 
vehicle UMV for survey missions, photogrammetric, traffic survey,…etc, the sensors 
embedded and integrated onboard suffer from intentional and/or unintentional 
disturbances such as spoofing, jamming, multipath signals which induces a 
phenomena of measurement outliers. Especially with the use of GNSS signal 
composed by the previous and modern satellite constellations including “GPS, 
GLONASS, Galileo and Beidou”, and the merging new information technology 
frequencies used by peoples in urban environment like Smartphones, GSM, WiFi, 
Bluetooth, onboard the aircrafts, during walking in the city, some interferences 
problems occur sometimes without any intentional meaning, and cause a major 
degradation in the navigation process.  



Interesting and original applications in this dissertation are related to short 
duration Navigation of UAV, Robot navigation and pedestrian navigation in the city 
in degraded GNSS environment. Because of the emergence of low cost sensors such as 
MEMS based sensors including accelerometers, gyroscopes, magnetometers, baro 
altimeters, and compass, all integrated on mobile phones such as new Android based 
Smartphones, it is interesting to transform the actual fusion algorithm based on 
modern nonlinear filtering used in those technologies and develop robust forms of 
these algorithms against denied GNSS environment and keep the use of such devices 
for important matters such as blind peoples tracking and navigation in the city, 
autonomous robots for multi purposes in the human life and especially to improve the 
quality of existing tracking systems present with millions of devices in the world 
market and used for Aircrafts tracking and fleet management, ships, boats, cars, and 
also peoples tracking for safety purposes in additional to all parallel Space applications.  

Finally a novel and original theoretical and practical example on the basis of 
“Iridium Satellite Only Based Positioning System during GNSS missing” is giving as a 
real perspective for both mathematical studies and for technological development of a 
navigation solution on the surface of the earth in ocean, desert and even in urban 
environment. Analogue solution is then extrapolated to another original navigation 
problem devoted to astronauts and robonauts navigation on the surface of Mars planet 
using Phobos or Phobos/Deimos “natural satellites” instead of launching 06–08 
artificial satellite on the orbit of Mars. This work has been object of 37 publications 
with 09 papers indexed SCOPUS and 01 paper accepted after revision in ISI 
THOMSON Journal.  

 
Keywords: Kalman filter, nonlinear filtering, non-Gaussian noise, Gaussian Mixture, 
GPS, GNSS, Impulsive noise, MEMS.   
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1 INTRODUCTION  

1.1 Intellectual merit 

This dissertation consists on the analysis and comparison of development of robust 
modern non linear filtering algorithms. These robust filters are applied to original 
integrated navigation systems based on inertial sensors and Global Navigation by 
Satellite Systems GPS, GLONASS, GALILEO, BEIDOU, … etc. In the dissertation, 
Part 1 provides description of the integrated navigation sensors and mathematical 
models involved based on original non linear information filters. Part 2 provides 
general description of modern non linear filters starting from Kalman filter [63, 64, 
75] and its extended form [5, 33, 45, 46, 48, 75–76], then to Sigma Point Kalman 
Filters (SPKF) [17, 23, 54, 65–67, 72], Divided Difference Filters (DDF) [38, 44, 53, 
54], Gauss Hermite Kalman Filter (GHKF) [36, 58–59] and Cubature Kalman Filters 
(CKF) [36, 68]. Estimation accuracy and asymptotic stability is analyzed through 
multiple comparisons with Mean Square Error (MSE) and Cramer Rao Lower Bound 
(CRLB) as reference criteria [60]. Part 3 is divided in three important sections; with 
three contributions. First, adaptive fading algorithm is applied to non linear filters 
described in this dissertation with accuracy estimation analysis of different non linear 
state space models; the second point consist on simulation of integrated navigation 
system in denied environment especially during denied GNSS using outliers model 
based on impulsive noise [7, 12, 16, 24–27, 31–32, 34–35, 40–41, 62]. Gaussian 
mixture filtering approaches are applied to the modern filters EKF, SPKF, CKF and 
GHKF, these are transformed into Gaussian sum filters [1, 11, 26–27, 33, 37, 47, 50, 55, 
61, 73, 77]. Then, the third section of Part 3 provides the hybrid robust non linear 
filters based on Adaptive Fading and Gaussian mixture CKF and GHKF algorithms. In 
part 3, non linear filters variants are analyzed, derived and compared on the basis of 
MSE/RMSE. Part 4 is dedicated to integrated navigation systems and provides an 
overview of the actual development of advanced aerospace technologies. Description 
of modern sensors is well presented and integration architectures are also well 
investigated with several existing and expected designs, especially a novel design for 
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blind people localization and navigation in the city. Part 5 contains three applications 
of developed and investigated robust techniques proposed in this dissertation. 
Gaussian mixture filters are applied first to integrated navigation systems INS/GNSS 
and other sensors for several navigation for UAV navigation (Part 1, Part 2 and 
Part 3), then, application to robot navigation based on multiple sensors fusion based 
on decentralized non linear Information filter [5, 6, 20, 29–30, 46] (Cubature 
Information Filter CIF) proposed with its non Gaussian variant based on Gaussian 
mixture filtering in denied GNSS environment. Then, Original Pedestrian Navigation 
System especially for blind peoples is developed, The application dedicated to blind 
peoples localization and guidance in the city is based on GPS/GLONASS/Compass 
and robust data fusion [10, 15, 39], with special correction and self calibration of 
electronic compass done using road orientation; and magnetic declination of streets in 
the city. As a final point, original and innovative positioning and navigation system 
based on Iridium Satellite only based signal processing is carried out with 
mathematical and practical proof of impulsive noises existence during Iridium data 
processing. A mathematical model for robust estimation then is proposed to solve the 
problem of navigation in denied GNSS or during missing positioning signals [14, 18, 
19, 9]. This work has been developed, tested and patented in Russian Federation. 
Finally, a general conclusion about the effectiveness of the proposed algorithms is 
summarized, carrying out very interesting prospects for future works. 

1.2 Goal of the work  

The goal of this work consists on the development of robust non linear filters for 
integrated navigation systems based on inertial sensors and external aids such as 
GNSS. Denied environment has been privileged with high initialization error and non 
Gaussian measurement noises such as in interfered environment. These non linear 
filtering algorithms are applied to UAV navigation, robot navigation, pedestrian and 
land navigation in denied GNSS environment. The robust non linear filters proposed 
in this dissertation are based on modification of EKF, SPKF, DDF, GHKF and CKF, 
most likely known as respectively Taylor based linearization filter, Unbiased filters, 
interpolation filters, Gauss Hermite based Quadrature filters and Cubature based 
Kalman filter.  

1.3 The main results  

The set goal was achieved by solving the following problems: 

1. Comparison between the direct filtering approach for sensor fusion and the 
indirect filtering approach based on inertial error model.  
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2. MSE/RMSE Analysis of modern non linear filters for time series estimation 
problem then to solve original integrated navigation problems in aerospace.  

3. Comparison between non linear filters in specific cases of high initialization 
error of the state estimate, based on adaptive fading algorithm were applied to 
EKF, SPKF ,DDF, GHKF and CKF.  

4. Development of Gaussian mixture non linear filters with application to 
INS/GNSS integrated navigation system in denied GNSS environment affected 
by alpha-Stable noises defined by the symmetric Gaussian mixture pdf with 
time varying variances of Gaussian components.  

5. Selection of the CKF algorithm as the best estimator with the synthesis of its 
Information Filter and its Gaussian mixture variant with application to multiple 
sensor fusion for UAV, 2D robot navigation and 2D Pedestrian navigation in 
non Gaussian environment. 

6. Original solution for Blind people’s localization and navigation in the city was 
developed and has been experimented, then patented in Russian federation. In 
addition, real iridium based tracking system has been experimented to tests 
nonlinear filters developed in this dissertation and additional geometrical 
algorithms.  

1.4 Method of Investigation  

In the course of dissertation research, the following methods are used: the methods of 
system analysis, estimation theory, non linear estimation and non linear filtering 
techniques, adaptive fading factors, Gaussian mixture approaches for non Gaussian 
filtering problems were investigated with application to INS/GNSS integrated 
navigation system. The calculation or the lower bound of estimation in the case of non 
linear systems with Gaussian and non Gaussian noises are also subject of mathematical 
development. MATLAB Software was the principal soft-tool used in this thesis in 
addition to MEMS sensors, compass, GPS receiver. AT commands and SBD iridium 
protocols have been used during the multiple experiments.  

1.5 Scientific Novelty  

Scientific novelty of the concluded researched consists of the following: 

1. Direct filtering applied to integrated navigation system INS/GNSS is a 
comparative solution to the indirect filtering based on inertial error dynamical 
system and should be the basis of the future implementation of integrated 
systems especially in denied GNSS environment. 



20 

2. The Comparison in the accuracy and stability between different non linear 
filtering approaches has been computed in dissertation, with accuracy and 
computational complexity analysis.   

3. Adaptive fading usually applied to linear filters has been extended to modern 
non linear filters SPKF, GHKF and CKF. Adaptive fading factor is introduced 
differently during sequential measurement update step, under high error state 
initialization. During simulation tests, divergence of EKF was observed as an 
unusual case which has determines its limitations. Fast convergences of the 
adaptive fading non linear filters have been achieved. 

4. Gaussian mixture EKF as a reference algorithm, is compared to Gaussian 
mixture SPKF “DDF, UKF, CDKF, GHKF and CKF”, in denied GNSS 
environment with impulsive measurement noises. Then, on the basis of the 
symmetric distribution, our results are compared to analog researches based on 
Huber estimators presented in particular and recent scientific publications in 
this field at the American Institute for Aeronautics and Astronautics (2007–
2011). Finally, decentralized data fusion based on the proposed Gaussian 
Mixture Cubature Information Filter is increasing accuracy and provide the best 
sensors fusion for real time implementation according time complexity and 
accuracy. 

5. Original solution of localization and guidance for Blind peoples in the city was 
suggested based on well known sensors, GPS/GLONASS and electronic 
compass, integrated with robust filters developed in dissertation. Russian Patent 
N° 89221, issued on 08 November 2009, Moscow, Russia. 

6. The proof of the necessity to develop new performing nonlinear filters against 
non-Gaussian noises and especially against impulsive noise during real tests has 
been stated.  

1.6 Practical Value 

The results of dissertation may serve as basis for improving accuracy and convergence 
of non linear estimation algorithms in presence of non Gaussian noises, and also 
methods to formulate Gaussian mixture non linear filters applied to integrated 
navigation systems in Aerospace. The results obtained in this thesis allows for the 
following: 

1. Optimize data fusion problems in robotics, aeronautic, space and other 
applications using novel formulations of non linear information filters proposed 
on the basis of modern approaches UKF, GHKF and CKF.  
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2. Attractive results are the fast convergence of the proposed integration 
techniques in real applications under high initial state uncertainties such as for 
robotic applications, UAV navigation, marine navigation…etc. 

3. Ensuring robust integrated navigation system for airplane under low and high 
unintentional interferences such as: from VOR/DME, RADAR, ILS, TV, 
UHF,GSM, Iridium satellite telecommunication frequencies, Tracking 
applications, pedestrian localization and navigation…etc 

4. Implementation of the proposed algorithms on smartphone Android such as 
GALAXY Smartphones, iPhones, iPad, iPod,…etc for people localization and 
navigation using the Android SDK (Software Development Kit) and the 
integrated sensors such as accelerometers, magnetometers, gyroscopes, 
cameras,…etc 

5. Real localization system and guidance of Blind peoples in the city is also a real 
potential and challenge to achieve by the proposed techniques. Russian Patent 
N°89221, issued on 08 November 2009, Moscow, Russia. 

6. Proposal of novel and original positioning and navigation system based on 
iridium satellite network with new initialization algorithms.  

1.7 Implementation results 

The results deduced and obtained in this dissertation have been implemented and 
tested at IIAAT on real integrated navigation system IMU/Magnetometers/GPS/Baro-
altimeter “Open Pilot Board” and are subject of interest in testing and implementation 
at JSC Russian Navigation Technologies. These results are coherent, if we compare 
with other research works results obtained by specialists in this field at AIAA between 
2007–2011 [42]. The main interesting in parallel appraoch is the ability to implement 
and obtain such results in real time implementation on processors and FPGA circuits, 
it is more suitable for parallel programmation than other techniques such as 
implementing Huber estimators.   

1.8 Approbation of work 

Main results of dissertation were presented and discussed at several conferences and 
reviewed in famous journals in this field. At IEEE Aerospace Conference,USA-2010, 
17th ICINS at Saint Petersburg-2010, at 1st World Space conference in Germany-2010, 
at IFAC Aerospace congress , Nara, Japan,2010 , at IEEE Aerospace Conference USA-
2011, 17th ICINS at Saint Petersburg-2011, IFAC international Congress, Milano-2011, 
at IFAC AGNC, India-2012, at IEEE Aerospace Conference USA-2012, at 19th ICINS 
at Saint Petersburg-2012, at Kazan Journal “Actual problems in Aviation and 
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Aerospace Systems” 2012, Journal of Signal and Information Processing, 2012, at 
Cybernetics and Physics Journal 2012, Inside GNSS magazine and Inside GNSS 
column 2012, in addition to Patent N°89221, issued on 08 November 2009, Moscow, 
Russia. The main results have been presented at seminar of Institute of Control 
Sciences in Moscow on 27 November 2012 and also at seminar of SUAI on 07 
December 2012. In 2013, Seven (07) publications have been released in indexed and 
abstracted journals, Journal of Signal and Information Processing — JSIP Vol.4 No.4, 
November 2013, Journal of Sensor Technology JST — Vol.3 No.4, December 2013. 
International Review of Aerospace Engineering — (IREASE), December 2013 (Vol. 6 
N. 6). Journal of the Moscow Aviation Institute, Vestnik, Vol. 20, No.5, December 
2013. International Journal on Information Technology (IREIT) January 2014 (Vol.2 
N.1). Last results have been accepted at IFAC Congress 2014, and ICINS- 2014 
Elektropribor, St Petersburg. At the International IFNA-ANS scientific Journal, 
“Problems of nonlinear-analysis in engineering systems”, № 1 (41), vol. 20, 2014, 22–
33. UGATU Vestnik (VAC) Journal,2014 and submitted into a revised form at the 
Journal GPS Solutions-Springer Edition 2014.  

Structure and volume of dissertation. The dissertation work consists on the 
main content, conclusion, references and appendixes. The work is presented in 
63 pages of basic text, figures, references and appendixes, in addition to 04 most 
important publications.  

 



 
 
 
 
 
 
 
 
 
 
 

2. THE MAIN CONTENT 
 

2.1 Introduction 
 

The statement of estimation problems especially non linear filtering algorithms 
applied in aerospace are investigated and described. Original integrated navigation 
problems are treated and solved using different filtering methods. A state of the art of 
INS/GNSS integrated navigation system [21, 22, 70] and aerospace sensors fusion [10, 
56] based on Filtering techniques and especially on non linear filtering is also 
overviewed. Original solutions are proposed and developed with well evaluated 
observed results. Repartition of dissertation work during last three years have been 
also enumerated and commented. In low cost integrated system, the Kalman filter is 
generally used to combine the outputs of IMU, linear accelerations and angular rate 
for strap down configuration with kinematical model of vehicle. Global Position 
System (GPS) outputs such as position and velocity are used to correct Inertial 
Navigation System (INS) errors growing in time. This correction is possible using 
Kalman filter in the linear model case and extended Kalman filter in the nonlinear 
case, which is the most useful filter for integrated navigation system problems. 
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FIGURE 1    Direct Filtering Development for Integrated Navigation System 

 
This is why it is called an indirect mode [23, 56, 70]. For the second approach, 

i.e. the direct mode, the state vector is estimated directly via nonlinear estimator like 
EKF or other nonlinear filter like Sigma-Points Kalman filters.  
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FIGURE 2     Direct Filtering — Indirect Filtering for Integrated Navigation System 

 
The main problem in inertial navigation system is the bias and drift of the 

accelerometers and gyroscopes. In fact the problem of filtering is followed by control 
problem resolution in order to improve and realize more accurate control algorithm 
based on more accurate estimates. To solve this problem, different approach can be 
used such as indirect and direct mode and different filters can be applied [51,56,70]. 
The first approach means estimation of the state vector errors using linear Kalman 
filter and summing these values at the output of the inertial system design, see 
[Benzerrouk et al., 3].  

 
Direct combination approach 

Within an integrated navigation system, the filter can be configured either as a direct 
or indirect form depending on the types of sensors and the complexities of the system. 
In a direct configuration, the filter directly estimates the states of interest. It typically 
constitutes a main functional block within the system performing both the dead-
reckoning and the observation fusion. In the indirect formulation, the filter estimates 
the error quantities of the desired states, and applies this error to the external dead-
reckoning loop for correction, hence it estimate the state indirectly.  
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FIGURE 3    Inertial and Navigation (N, E, D) frames 

 
 
The thesis dissertation presents a new method for a low-cost strapdown-

IMU/GPS combination [39, 52], with data fusion for the determination of 2-D/3-D 
components of position (trajectory), velocity and attitude angles. In this approach 
called “Direct filtering”, it is assumed that earth rotation and gravity variations are 
neglected, with the use of low gyroscope sensitivities of the low-cost IMU and due to 
the relatively small volume and/or the surface of the mobile trajectory. It is possible to 
define: 

 Inertial frame (i), Earth Fixed frame (e), Navigation frame (n), Body frame 
‘‘body’’ (b).  

The scope of this thesis was to test the feasibility of an integrated navigation 
system based on multiple low cost sensors fusion and to develop adaptive and robust 
nonlinear filters for such a combination in denied GNSS environments. The local 
reference system NED (North, East, Down) (denoted here with n) is assumed in this 
thesis to be an inertial frame (see Fig. 3), for more details, see [39, 70]. 

 
 

Inertial Kinematic model 

This research focuses on the unexplored direct filtering applied to INS/GNSS 
integrated navigation systems with non-linear dynamic inertial kinematic models.  
Inertial measurement units (IMUs) typically contain three orthogonal rate-gyroscopes 
and three orthogonal accelerometers, measuring angular velocity and linear 
acceleration respectively. Ideally, the output of the rate-gyroscopes is written as: 
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FIGURE 4   Inertial Measurement Unit Mechanization 

 

Angular velocity                     Tbzbybxb tttt    (1) 

In practice, however, the outputs contain errors and are written as 

       ,~ ttt bbb              Tbzbybxb tttt    (2) 

Integrating this yields the updated attitude information for the system [39, 56, 65–66],  
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Similarly, accelerometers outputs can be written as:  

         Tbzbybxb tatatata   ,      ,~ tatata bbb   (5) 

Two integrations subsequently yield velocity and position updates as follows 

Velocity integration :  nknknkn gatVV   ,1,,
~  , (6) 
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Position integration :  kngknkn VtPosPos ,1,,    (7) 

where ng  is the estimated gravity vector and t  is the constan rate of period. 
Collectively, equations eq.3-eq.7 describe the system model. After differential and 
mathematical development, it is possible to write the following state space model [39] 
which is the basis of the future implementations:  
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The Jacobian matrices are used in the implementation of the extended Kalman Filter 
EKF or the Linearized Kalman Fiilter LKF, or as the basis of the derivation of the 
second order Kalman filter 2nd Order KF [2, 3, 15, 27, 39, 46, 48, 51, 56, 75]. 

GNSS position information and novel Satellite based Positioning 

GNSS signal processing is much explored based on different algorithms tested more 
and more in real time conditions and in simulations during different denied 
conditions. GPS-GLONASS satellites also broadcast signals in the L1 and L2 sub-bands 
of the radio frequency spectrum as described in the literature[55, 57, 61]. It is observed 
in some situation several interferences from different sources for GPS and GLONASS 
during static and dynamic positioning. GNSS outages or outliers cause accuracy 
degradation, and sometimes undelivered GNSS receiver positioning. Correspondingly, 
we can write the observation matrix as  

  kGNSSkGNSSkGNSSkkGNSS AVPhH ,,,, ,,  (12) 
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(9) 
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For the purpose of this thesis, the measurement model is assumed to consists of 
GNSS-observed position ( GNSSP ), velocity ( GNSSV ) for loosely coupled approach, delta 
range and delta rate for tightly coupled approach and attitude ( GNSSA ); the latter 
derived using a multiple antenna system. Later in this thesis, a specific problem of 
GNSS outliers caused by impulsive noises is then considered.  

It is also possible to consider the direct observation or measurement from GNSS 
receivers given position in Latitude, Longitude, Altitude such as described below in 
eq.14. 
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In this work, the standard, non differential, civilian signal is used. It provides a lower 
accuracy but acceptable in low cost integrated navigation systems, is the lowest cost 
GPS solution is advantageous because of its availability. The standard measurement of 
the GPS system is the pseudo-range and the pesuedo-rate. This defines the 
approximate range from the user GPS receiver reference point to GPS or GNSS 
satellites. The pseudo-range is the true distance corrupted with differential errors 
specified by the following formula [23, 39]:  

 kclksionclkrjj vr  ,,   (15) 

Where: 

jr Pseudo-range from the user to the jth satellite Geometric range from the user 
to the jth satellite 

clkr , Range equivalent receiver clock bias offset from GPS system time 

clks , Range equivalent satellite clock bias offset from GPS system time 

ion  Ionospheric signal attenuation error 
v k   Zero mean white noise 

Note: Multiple experiences based on GPS/GLONASS receivers have been computed 
during this research work in order to compare the TTF and the number of satellite in 
visibility. The degree of nonlinearity is known as significant under a specific 
conditions [61, 62].  
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2.2 Linear and nonlinear filtering 

This part provides theory and overview of linear filtering, Kalman filtering and 
information filtering [5, 29, 30]. Both non linear forms of information and Kalman 
Filter are presented and discussed. More accurate forms of EIF and EKF based on 
iteration in measurement step are also discussed and well described in simulation. 
Below, algorithm of EKF such as given in Literature which is the basis and the 
reference filter for all coming results:  

Extended Kalman Filter Algorithm [46, 48] 

Based on state space model described by : 0
.)(
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wxfx
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and on the linearization using Taylor approximation at the first order we get the state 
space model given in eq.16. Fk(.) is the Jacobian matrix of fk(.) and Hk(.) is the Jacobian 
matrix of  hk(.). 
Initialization : 0x̂ et 0P .                                                                     

Prediction : )ˆ(ˆ /1 kkkk xfx    (17) 
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Update :  
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    )ˆ(ˆˆ 1/1/   kkkkkkkk xhzKxx  (20) 

  1/1/1/ )ˆ(   kkkkkkkkk PxHKPP  (21) 

In practice, the application of EKF, EIF depends on the nature of the process and 
measurements. Based on high order Kalman filter, new non linear high order 
information filter has been developed with its iterative variant. Novel formulations of 
non linear filters are derived in this first chapter. Simulations results proof superiority 
of the new developed algorithms “Iterative Information Filters”. Below, a description 
of the information filtering approach which has a serious advantage of non 
computational complexity in the “Kalman gain calculation”.  
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Information Filter and Non Linear Information Filters 

The information filter is mathematically equivalent to the Kalman filter except that it 
is expressed in terms of measures of information about the states of interest rather 
than the direct state and its covariance estimates. Indeed, the information filter is 
known to have a dual relationship with the Kalman filter [63,64]. If the system is linear 
with an assumption of Gaussian probability density distributions, the information 
matrix Y(k/k), and the information state estimate y(k|k), are defined in terms of the 
inverse covariance matrix and state estimate . 

     kkPkkY // 1  ;  

       kkxkkYkky ///   ; 
(22)

 

When an observation occurs, the information state contribution i(k) and its associated 
information matrix I(k) are given by the following expressions:  

         kzkRkHki T 1  ;                                   

                                             kHkRkHkI T 1 ; 
(23)

 

By using these variables, the information prediction and update equation can be 
derived from Kalman filter.In this thesis, the synthesis of more accurate nonlinear 
information filters is achieved and each of the 2nd order Kalman filter, Unscented 
Kalman Filter, Central Difference Kalman Filter and finally Cubature Kalman Filter 
have been transformed into information filters on the basis of the Extended 
Information Methodology [46].  

 

SPKF-CDKF Central Difference Kalman Filter (UKF variant)  

For CDKF, it is approximately the same idea as in UKF algorithm [Benzerrouk et al., 
4], at the difference of the steps of propagation of the sigma points through the non 
linear functions of dynamic of the system and measurement equation, behind this, the 
non linear approximation of these functions is done using the divided differences [55, 
66]. Generally, it is used the optimal value of h = 1 [65].  
Initialization 
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Pour k=1……. , t = k–1 
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Augmented state and Sigma points   vxx t
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Sigma points propagation through the process 
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Measurement sigma points 
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Sigma points Kalman filters (SPKF) introduced by [65] both Unscented filters 
(UKF) and central difference Kalman filters (CDKF) mean the SPKF. In this case, it is 
not the non linear function which is estimated, but the RGV, and the density of 
probability using a deterministic sigma points to estimate at the first and the second 
order the moment of the RGV, so, the means and the covariance of the state vector can 
be estimated better than by the EKF, because the accuracy of these kind of estimators 
is the second and the third order of Taylor development. 

As presented in the previous section, the algorithm use the second order 
polynomial interpolation of Stirling’s polynom and are defined two other matrix 
comparing with the 1st order divided difference filter DD1 and the 2nd Order DDF [53]. 

 

The 2nd order Divided difference filter DD2 [53] 

The DDF2 algorithm can also be described in the unified way used and demonstrated 
by replacing the first-order prediction formulas for the state and covariance with the 
second-order ones. The proposed algorithm, referred to as the divided difference filter 
(DDF) proposed by [53] is an efficient extension of the Kalman Filter for nonlinear 
systems. The DDF is described as a sigma point filter (SPF) in a way where the filter 
linearizes the nonlinear dynamic and measurement functions by using an 
interpolation formula through systematically chosen sigma points. The linearization is 
based on polynomial approximations of the nonlinear transformations that are 
obtained by Stirling’s interpolation formula, rather than the derivative-based Taylor 
series approximation [38, 42, 71]. 

 
Particle Filter PF 

The particle filter is a sequential Monte Carlo algorithm, i.e. a sampling method for 
approximating a distribution that makes use of its temporal structure. A “particle 
representation” of distributions is used, for more details, see [24, 32, 41, 46, 58, 73].  
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2.3 Modern nonlinear filtering  

Modern nonlinear filtering algorithms are described by historical chronology of non 
linear filtering theory development. Multiple variants were developed based on high 
order Taylor approximation and iterative form such as well described methods in 
chapter1. In 1997, new variants of non linear based Kalman filter algorithms were 
developed and are described in detail in this chapter. Parallel solutions more accurate 
than EKF but still sub optimal non linear filters called Sigma Point Kalman Filters 
including two variants: (Unscented Kalman Filter) and (Central Difference Kalman 
Filter). Using different philosophy such as in particle filtering, these algorithms 
compute deterministic sample points instead of random samples in order to estimate 
the mean and the covariance of the random Gaussian variable RGV. Chapter 2 
describes in detail algorithms of SPKF (CDKF) used in this dissertation as a second 
more accurate references than EKF. Finally most recent algorithm (2009) called 
Cubature Kalman Filter CKF is compared with other SPKF and EKF with extended 
use in denied GNSS environment with non Gaussian noise, thus, Gaussian Mixture 
CKF-GMCKF is developed and compared to SPKF and CKF. 

Cubature Kalman Filter Algorithm (Haykin 2009) 

1. Draw cubature points i , I = 1,2,…,2nx from the intersections of the n-dimensional 
unit sphere and the Cartesian axes. Scaled by xn . The cubature based Gaussian 
filter algorithms use cubature rules of the form:  

  

   



m

i
ii ffI

1

    

to approximate the integral of the form:        

        
  dxexgdxxxg xx

n

T




 21  (42) 

We can write then:  










nix

ix

i
en

en
 for   i=1,….., xn ,i=n+1,……, xn2  

 
See [36, 37, 59, 68] for more details. Use the Cubature points for propadation in 

the algorithm presented in Gauss Hermite Kalman Filter which is defined by eq. 51–62 
, see [Benzerrouk et al., 1]. 
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Gauss Hermite Kalman Filter 

The basic idea is that a KF can optimally deal with these states such as in the classic 
linear integration of INS and GNSS, while reducing the dimension of the state-space 
that the GHQKF has to explore [36, 59]. We use the direct integration approach 
modelling, with separation of position “linear” and Velocity, Attitude “non linear”. 
Thus, one can describe Gauss-Hermite Quadrature Kalman Filter by the following: 

 
We consider the weighted integral of function f(x) over the interval (i, j): 

       dxxfxWfI
j

i


 
 (43) 

With  xW  is a weight function almost positive or equal o zero in a few points. An n-
points numerical quadrature “integration” is  fI  approximated by the following 
formula: 

     



n

k
ll ffI

1
   (44) 

In this approximation, l  are the quadrature points and l  represent the 
corresponding weights. given n distinct quadrature points, one can calculate the 
weights l  using the moments Mi integral equation given below :  

   dxxWxM
j

i

i
i  ,      for        1,...,1,0  mi   (45) 

And by solving the Vandermonde system of equations described below:  
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   (46) 

The non linear system described before is known as the system of moment 
equations. According Gauss-Hermite rule, the weight solutions are chosen as a 
standard Gaussian density with zero mean and unit covariance components. A 
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complex and difficult solution to determine the weight function is to solve the non 
linear system equations. Another way has been chosen as the zeros of the m-th order 
Hermite polynomial [36, 59]. Since the Hermite polynomials are distinct, it is known 
that the determinant of the eq.46 is non zero due to Vandermonde determinant 
property.  

The vector  m ,...,, 21  is unique solution. Thus, for an m-point quadrature 
rule, the quadrature is exact for all polynomials that less or equal than (2m–1). Then, 
when considered a random variable x having a Gaussian probability density )1,0;(x . 
The expected value of the function  xf  is approximated by the following expression:  

 
      

R

dxxxfxfE 1,0;    

One can construct the quadrature points such as given in the following 
paragraph. This step is the key of the Gauss-Hermite Based Kalman Filter compared 
with Cubature rule based Kalman filtering and previous Sigma Point Kalman Filtering 
approaches. The difference in the determination of the quadrature implies the 
difference in the covariance and state estimation which will be developed later in 
the next sections.  

 
Gauss-Hermite Quadrature Points generation 

We consider the matrix J as a symmetric tridiagonal with zero diagonal elements. Let 
us write the following description:  

  ,2/1, iJ ii     11  mi     (48) 

Then the quadrature points l  is determined by the following formula: 

ll  2 , where l  is the l-th eigenvalue of the tridiagonal matrix J. The 

corresponding weight  21ll e  where le  is the first element of the ith normalized 
eigenvector of J. For a Hermite polynomial of order m, mn Gauss Hermite quadrature 
points are generated. As in the most case of non linear estimation problems such as 
attitude estimation for UAV or position, velocity and attitude estimation, the integral 
in eq.49 achieves Multidimensional quadrature rule formula by the recursive 
application of its computation and expectation as given below:  

        
nxR

nx dxIxxfxfE ,0;     (49) 

(47) 
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For more understanding and details about the improvement of the quadrature rules 
and the Gauss-Hermite Qudarature and the relation with Bayesian filtering, one can 
read [73].  

After the description of the quadrature points generation using algorithm 1 
given in [ Benzerrouk et al., 1], one can summarize the GHQKF algorithm such as 
given in the next paragraph. 

The following subsection describes the GHQKF algorithm following analog 
steps as defined in the Cubature Kalman Filter CKF, with prediction step and 
measurement update. For Cubature Kalman Filter xnm 2 . 

 
Gauss Hermite Qudarature Kalman Filter xnpm   with p the degree of Hermite 
polynom 
 
Time Update step 

 
1. Assume at time k that the posterior density function is known. Factorize 

 Tkkkkkk PPP 1/1/11/1   . 

2. Evaluate the Quadrature points  m

lkklX
11/1,   as given below  

Propagate Quadrature points. The matrix square root is the lower triangular 
Cholesky factor. 

  1/11/11/1, ˆ   kklkkkkl xPX   (51) 

3. Evaluate the Quadrature points with dynamic model function:  

   1,, 11/1,
*

1/,   kuXf kkklkkl    (52) 
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4. Estimate the predicted state mean:  

    
m

kkllkkx
1

*
1/,1/ˆ    (53) 

5. Estimate the predicted error covariance:  

  11/1/
1

1/,
*

1/, ˆˆ 



  k

T
kkkk

m

l

T
kklkkllx QxxP

k
  (54) 

Measurement Update step 

Factorize   Tkkkkkk PPP 1//1/   . 

1. Generate Quadrature points  m

lkklX
11/,   (as in step 1).  

2. Propagate the Quadrature points.  

  1/1/1/, ˆ   kklkkkkl xPX   (55) 

3. Evaluate the quadrature points with the measurement model.  

   1/,1/,   kklkkl XhY  (56) 

4. Estimate the predicted measurement:  

  





 
m

l
kkllkk Yy

1
1/,1/ˆ   (57) 

5. Estimate the innovation covariance matrix.  

  
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T
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T
kklkkllkk RyyYYS
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6. Estimate the cross covariance matrix.  
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39 

7. Estimate the Kalman gain.  

  
1

1/1/,


 kkkkxyk SPW  (60) 

8. Estimate the update state.  

    1/1/ ˆˆˆ   kkkkkkk yyWxx  (61) 

9. Estimate the error covariance 

  T
kkkkkkkk WSWPP 1/1//    (62) 

In this work, the use of novel Quadrature Kalman Filter (QKF) called Gauss Hermite 
Kalman Filter (GHKF) is applied to INS/GPS/GLONASS integration problem in 
Gaussian and non Gaussian noise environment [1, 45, 55, 57, 69, 78, 79]. Especially 
Marginalized QKF (M-QKF) is proposed and developed. Navigation state including 
linear part with position integration and non linear part with velocity and attitude 
angles integration is proposed as an appropriate model to GHKF and CKF algorithms 
[65–66]. In this dissertation, the limits of these algorithms have been determined when 
the model of measurement noises changes to non Gaussian. Especially in denied GNSS 
environment, noises are supposed to follow the alpha stable symmetric distribution. 
To solve this problem, Gaussian mixture filtering method has been chosen instead of 
Huber based estimation method [34, 35, 42]. These algorithms are applied to 
integrated navigation systems low cost inertial sensors.  
 

 
FIGURE 5   Guidance Navigation and Control System for UAV 
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Multiple trajectories have been simulated in a closed form in order to appreciate 
how can each filtering algorithm tracks the reference trajectory especially compared 
with IMU deviation after a few minutes.  

 
Results of GHKF-CKF- CDKF with 5nx Quadrature points ( 59 points) 

During these new simulations, the number of Gauss-Hermite Sigma Points has been 
increased to 5nx Quadrature points compared with Sclaed GHKF of 3nx Quadrature 
points.  
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FIGURE 6    MSE yaw angle 5nx Quadrature points — MSE (Scaled 3nx Quadrature points) 

 
In Fig.6, it is possible to observe the classification carried out from simulation 

results with two main classes related to MSE estimation; EKF and UKF provides the 
approximated same results in attitude estimation based on Euler angles, however 
CDKF, CKF and GHKF are the best estimators with additional smother classification, 
GHKF presents smother characteristics which can be explained by the use of higher 
number 5nx Quadrature points of Sigma Points. It is the only filter with high error 
estimation stability and with the best accuracy achievement, see [2, 3, 4, 8].  

 
Results of GHKF-CKF-CDKF with 3nx Quadrature points based on Scaled GHKF 
(39 points) 

A scale factor is introduced in the prediction and estimation step such as in adaptive 
fading factor and has improved the accuracy of GHKF estimation which carries out 
three classes of non linear filters well distinguished according simulation results shown 
in Fig.6.  During all simulations presented, it is clear that in the accuracy order, we 
obtain the following nonlinear filters: EKF, UKF, CDKF, CKF, GHKF. Cramer Rao 
lower born [1, 46, 58, 60] has been simulated as the minimum estimation variance in 
order to compare all non linear filtering approaches proposed in this work.    
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2.4 Innovation based adaptive fading  
 
This section contains adaptive fading based non linear filters presented in Part 2 [48–
49, 80]. Adaptive techniques are developed in dissertation and are demonstrated in 
simulations. First, adaptive fading technique was selected and extended from the linear 
Kalman filter to the other four non linear variants; EKF, SPKF, DDF, and CKF. Sub 
optimal and optimal adaptive innovation based fading factors are calculated and 
applied to ensure higher tracking consiste. Only sequential measurement adaptive 
fading update is applied in order to produce efficient non linear filters with reduced 
time complexity. The calculation of adaptive fading factor is given below:  λ(k) is called 
the suboptimal fading factor [Benzerrouk et al., 2]. Suboptimal fading factor is 
determined and provided in dissertation, we propose the fading factor given by: 
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with 10   as the pre-selected forgetting factor, it has to be tuned according the 
process covariance noise apriori. When this factor is calculated, it is used into the 
measurement update step which occurs by sequences in all non linear algorithms 
described previously. In the dissertation; algorithms of the Adaptive Fading EKF 
(AFEKF), Adaptive Fading SPKF, Adaptive Fading DDF and Adaptive Fading CKF are 
applied to integrated navigation systems.  
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FIGURE 7    MSE Down velocity estimation (m/s)-zoom 

 
In the dissertation, all these new formulations based on adaptive fading 

algorithms are simulated and applied to non linear time series estimation in order to 
test and proof those efficiencies, accuracy and time of convergence. Results in Fig.7 
show unusual cases of divergence of extended Kalman Filter EKF, with superiority of 
the proposed adaptive forms. 

 
Adaptive fading based nonlinear filtering 

The time-varying suboptimal scaling factor is incorporated [48,77,80], for on-line 
tuning the covariance of the predicted state, which adjusts the filter gain, and 
accordingly the adaptive filter is developed. The suboptimal scaling factor in the time-
varying filter gain matrix is given by: 
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Some other choices of the factors are also used, where tr[ ] is the trace of matrix. The 
parameters are given by  
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The key parameter in the adaptive filtering described in this section is the fading factor 
matrix λk , which is dependent on three parameters, including (1) i ; (2) the 
forgetting factor (  ); (3) and the softening factor (  ). These parameters are usually 
selected empirically. Multiple simulations have been computed and interesting 
observations have been carried out. In simulated cases, EKF, UKF, CDKF, DDF and 
CKF converge but require high duration of time between 10–20 sec. However, AF-
EKF, AF-SPKF, AF-DDF and AF-CKF converge in less than one second. Below 
simulation results of adaptive fading non linear filters against large initialisation error 
to integrated navigation system INS/GNSS, see Fig.8.   
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FIGURE 8    3D trajectory estimation — North distance estimation 

In this part, we have improved SPKF using adaptive fading factors with fast 
convergence and high accuracy as new results. Another problem in filtering theory 
and practice was to overcome the Gaussian assumption of noises models of the 
measurements and in some cases in both equations “system and measurement”.   

 
 

2.5 Robust Cubature Kalman Filters-“Gaussian Mixture-CKF” 
 

In many estimation problems, it is appropriate to consider non-Gaussian noise 
distributions to model possible outliers or impulsive behaviors in the measurements, 
especially during navigation missions. In this paper, we considered a nonlinear 
filtering problem with a Gaussian process noise and a Gaussian mixture distributed 
measurement noise. Both processes’ statistics parameters are assumed to be known. 
Within this assumptions, we present a filtering method based on a SPKF, CKF and 
GHKF that use Gaussian Sum Filter GSF property and accounts for such heavier 
distribution tail and its varying parameters. 
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Gaussian Mixture and Impulsive Noise 

In dissertation all robust filters are simulated and compared on the basis of the Mean 
Square Error of estimation and compared to approximated Cramer Rao Lower Bound. 
By the way, some important results are shown in Fig.9, providing much better and 
stable robust estimation. Model of measurement noise is given by the mathematical 
equation of the density of probability p(x). In this dissertation, the challenge was to 
provide estimates of the state of dynamical systems when nonlinear system coupled 
with non-Gaussian measures are assumed to follow the following pdf:  
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Where , 2
1 , 2

2 are three parameters of this random variable law respectively called: 
contamination factor, first density variance, second density variance. A very small   
tends the Sum density to a Gaussian law; when   higher than 0.3 tends the Sum 
density to asymmetric non Gaussian density. Below, some examples are given in order 
to understand the effect of these parameters on the Gaussian Sum density [1, 3, 7, 11, 
15, 24, 25, 27, 31–32, 34, 41–44, 50, 61, 65, 69, 73, 76–78].  

The choices for the contaminating pdf are various such as 'heavy-tailed' 
distributions, or the Laplacian, or the double exponential. But, most often, the ratio 

2
1 / 2

2 has generally the value between 1 and 10,000, in our estimation problems, this 
ratio has been varying between [50, 100, 200, 500, 1000, 2000]. This model has been 
privileged in order to simulate a scenarios with extreme denied GNSS environment. 
This approach has already been used to model non-Gaussian measurement channels 
in narrowband interference suppression, a problem of considerable engineering 
interest [57, 78]. 
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FIGURE 9    Noise density (ε = 0.5) — Noise density (ε = 0.85) 
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When (ε = 0.5), it is easier to observe that in this simulation (see Fig.9), two 
Gaussian densities (blue and red) and Gaussian sum (green) are centered in addition 
to the curve variation in green colour which characterizes the impulsive contaminated 
noise. When the sum is not centered, it is possible to observe the sum of two Gaussian 
and the asymmetry of the non-Gaussian density easier than in the previous case 
(ε = 0.85). It is the best asymmetry in order test nonlinear filtering robustness.   
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FIGURE 10    Pdf of non-Gaussian density function of (ε = 0.005) for non-centered noises 
 
 
Finally, for (ε = 0.005) , one can assume that there is no impact on the final 

estimation based on Gaussian sum filtering, but as it is shown in the right figure, the 
impulsive noise is still varying from the Gaussian density and requires then to be 
tested also in our simulations.  

 
 

Robust Gaussian Mixture-CKF 

In this case we propose to use two parallel CKF to filter the density described in the 
previous paragraph and given by the eq.71.  It is then possible to use two parallel CKF 
algorithms for each Sum pdf characterized by 2

1 , 2
2 . Two CKF algorithms based on 

eq.51 till eq.62 are applied simultaneously with replacing the innovation by the 
following equation eq.72. 
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Simulation 2.  (Better RMSE with robust Filters) 
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FIGURE 11    North Velocity Mean Square Error — Down velocity Mean Square Error 
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And by additional estimation step described by the following equations : 
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With                                     1/2 kkj = 1/ kkS   and  1/ kke j = 1/ˆ  kkk yy .  

It is then observed that the proposed robust Gaussian Mixture filters provide much 
better estimation with better accuracy comparing with other methods and applications 
founded in literature. It is possible to observe on direct estimation results, accuracy of 
EKF, DD1, DD2 with reformulated versions of these algorithms. The same phases 
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such as for pitch estimation are observed and again, Robust Gaussian Mixture DD2 
shows much better results than other non linear filters such as EKF, DD1, DD2, 
Gaussian Mixture EKF and Gaussian Mixture DD1. It is clear that the only filter able 
to track real velocity is GM-DD2. Again, for roll and down velocity, even with some 
instability, GM-DD2 and GM-EKF provide better estimation compared to GM-
DD1[42].  

 
Robust Adaptive Non Linear Filters  

New results have been carried out in this section. which could be implemented in real 
time application in the presence of interferences especially, due to urban canyon, 
navigation in forest, low altitude flight,…etc. By those proposed hybrid techniques, 
both methods proposed previously are combined or hybridized. The resulted hybrid 
robust non linear algorithms are given by the factor described in eq.63–66 and the 
CFK algorithm.  

 
FIGURE 12    Gaussian Mixture SPKF-CKF Design 

 
The simulations are computed based on GPS, gyroscopes and accelerometers 

outputs, in order to validate the efficiency of the proposed architecture based on 
nonlinear filters ‘EKF, SPKF and CKF’. Direct estimation for INS/GNSS model is 
compared, based on Gaussian Sum forms of these algorithms. Simulation of new 
integrated navigation design is compared with classic nonlinear filtering algorithms 
and ACRLB [1]. All these techniques are finally computed under outliers conditions of 
GNSS and additional noise effect in the system process. This additional disturbance 
serves to observe the effect on each category of filter. Simulation conditions N = 1000; 
dt = 0.005; g = 9.81m/s/s; ε = 0.1; 2

2  = 2000 2
1 . Below attitude and velocity 

estimation based on EKF, UKF, CKDF and CKF for Gaussian processes and non-
Gaussian processes.  
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It is interesting to observe and compare the efficiency and the accuracy of each 
filter against non-Gaussian process noise. In simulation, only attitude angles and 
velocity estimations are presented because of nonlinearity of these state variables given 
in the state model. 
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FIGURE 13   Pitch angle MSE — Pitch angle MSE (Zoom) 

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5000

10000

15000
MSE Down Velocity in meter/second (m/s)

Time in second (s)

M
S

E
 D

ow
n 

V
el

oc
ity

 in
 m

et
er

/s
ec

on
d 

(m
/s

)

MSE EKF
MSE UKF

MSE CDKF

MSE CKF

MSE NGEKF
MSE NGUKF

MSENGCDKF

MSENGCKF
ACRLB

  
1 1.5 2 2.5 3 3.5 4 4.5

60

80

100

120

140

160

180

200

MSE Down Velocity in meter/second (m/s)

Time in second (s)

M
S

E
 D

ow
n 

V
el

oc
ity

 in
 m

et
er

/s
ec

on
d 

(m
/s

)

MSE EKF
MSE UKF

MSE CDKF

MSE CKF

MSE NGEKF
MSE NGUKF

MSENGCDKF

MSENGCKF
ACRLB

 
FIGURE 14    Down Velocity MSE — Down Velocity MSE (Zoom) 

     
 
It is possible to observe that for vertical velocity and pitch angle estimation (see 

Fig.13–14), CKF presents superior accuracy without disturbances. Velocity estimation 
is then more accurate with new formulated algorithms proposed in this work and 
UKF, CKF are better estimators than CDKF and EKF based on Gaussian mixture. It is 
then possible to observe that CKF outperforms UKF, CDKF and EKF comparing to 
ACRLB, see [Benzerrouk, 5].  
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2.6 Gaussian Mixture Adaptive CKF GM-ACKF 
 
The third chapter is ended by simulation results of INS/GNSS under interferences 
modified as an impulsive noise with high error in the initial state.  

In Fig.15, it is possible to observe in purple colour results of attitude, velocity 
estimation using hybrid robust proposed technique called Gaussian Mixture Adaptive 
SPKF-CKF-GHKF. Finally, the chapter contains significant results with three main 
contributions such as explained in the previous sections, first, adaptive fading non 
linear filters synthesis, Gaussian Mixture non linear filters derivation and hybrid 
robust non linear filter based on Gaussian Mixture Adaptive non linear filtering. In the 
next section, overview of the new developments contents is described, see [Benzerrouk 
et al., 2]. 
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FIGURE 15    Pitch error estimation — East velocity estimation 

 
 
 

2.7 Aerospace Sensors and Integrated Navigation Systems 
 

This part is very important and provides actual overview of sensors development in 
Aerospace, such as accelerometers, gyroscopes, magnetometers, compass, 
baroaltimeters, radioaltimeters, laser telemeters,…etc, well described and compared, 
given a large view on the most modern technology used in building these sensors, with 
several application examples in Aerospace. First part of this chapter contains also 
Satellite navigation systems description including GPS, GLONASS, Galileo system 
components and frequencies spectrum. The second part of this chapter is dedicated to 
integrated navigation system based on the fusion of inertial sensors and satellite 
navigation systems described and analysed in a large specialised literature. The inertial 
navigation system is the kernel of all integrated navigation systems developed in this 
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dissertation. First, the problem of UAV’s integrated navigation system INS/GNSS is 
simulated under several initial conditions: 

 
а. APPLICATION TO Quadrotor “Return to Home” OPTION. Return Home 
Scenario of quadrotor UAV AR.DRONE 2.0 (see Fig.16) without GPS cannot be 
achieved successfully only with inertial sensors and even with visual aids, this function 
is not available and not activated onboard the navigation board of the quadrotor UAV 
only if GPS flight recorder is connected to the mother board. Thus, our interest in 
solving a new problem related with such option in GNSS denied environment, 
especially GPS which used on UAV or robot. The selected reference trajectory has 
been a closed triangle with distance variation between the three extremity points from 
100m to 250 m and 500m, see Fig.16.  
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FIGURE 16   2D Trajectory control of AR.Drone 2.0 Quadrotor UAV using AR.Free Flight on Android 

 
The state machine to control various flight modes of AR.Drone are described 

and analyzed in details.  
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FIGURE 17    North velocity estimation — Pitch angle  MSE 

 
COMMENTS: By the analysis of GNSS signal and state estimates based on EKF, UKF, 
CDKF, CFK on Fig.16–17 it is possible to observe the impulsive nature of the 
interfered signal or jammed signals with the influence on non linear filtering 
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algorithms, in most figures, represented in blue colors. Usual available jammers 
typically transmit chirp signal in which the frequency increases (‘up-chirp’) or 
decreases (‘down-chirp’) with time, such as for multiple RADAR and SONAR signal 
processing problems. The power of jammers is over 10 dBm. High-power jammers 
shall have a fatal impact on GNSS usage over a large navigation zone such as our flight 
experience in a park. It is clear on multiple state estimation results for position, 
velocity and attitude of the quadrotor UAV that the most efficient algorithm is the 
Gaussian Sum CKF designed on figures by “NGCKF” with purple color in GPS-denied 
environment during automatic flight trajectory and remote control of AR.Drone 2.0.   

 
b. INS/GNSS/COMPASS/Lidar for autonomous robot navigation. As described in 
previous chapter sections, different fusion architectures existent and have been widely 
investigated in specialized literature. In this dissertation, the main problem which was 
solved is the “robust integration algorithm of sensors data fusion”. For multiple 
sensors fusion, information filter algorithm based on CKF and GHKF have been 
selected according the accuracy and have been applied to robot integrated navigation 
system and UAV’s sensors fusion. In denied GNSS environment, Fig.12 shows the 
proposed solution based on parallel CKF or Cubature Information Filter CIF for 
robust estimation of navigation states. 
 
с. Non linear dynamic system of robot: kinematic model is used for this 
experimentation instead of its dynamic model because the main problem processed in 
this dissertation is the state estimation of sensor fusion and not the control of the 
robot. 
 

                
FIGURE 18    2D robot model (Robot navigation) 

 
This model can be extended to consider other parameters such as wheel radius 

and slip angle that can have significant importance in other applications such as 
described on Fig.18. Also, GPS, GLONASS and electronic compass are assuming 
delivering data at 10 Hz, 5Hz and 5Hz respectively.  
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The velocity is generated with an encoder located in the back left wheel. Due to 
multiple sensors integrated in this application, and due to the previous results issued 
after synthesis of non linear high order information filters, Cubature Information 
Filter CIF is proposed to solve the problem of Robot navigation in Urban 
environment. Below simulation of robot navigation based on sensor fusion 
IMU/GPS/COMPASS and encoder with Gaussian assumption of measurement and 
process noises.  
COMMENTS: This application is very important in aerospace especially for actual and 
future Mars and Moon exploration missions using robots and rovers [74]. The 
problem of measurement outliers is realistic and is considered for multiple space 
missions based on Data fusion.  
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FIGURE 19     East Distance-2D Vehicle model (Robot navigation) 

 
 

1. After multiple simulations, CIF works well and outperforms UKF and CKF on the 
basis of RMSE criteria and multiple sensor fusion capabilities with less 
computational time complexity, thus, it is proposed to apply the decentralized 
Cubature Information Filter based on non Gaussian measurement noise. The 
algorithm described in the diagram in fig.62 is then applied. It is shown after 
analysis of different figures and results that the developed robust algorithms work 
well in such denied GNSS environment with significant and relevant improvement 
of the existing system has been achieved. 
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c. Blind Peoples Localization and Navigation System. Patent N° 89221,issued 
on 08 November 2009, Moscow, Russia. The principle is described in the 
following figure:  

 
Tests are computed based on gyroscopes and accelerometers outputs during walking 
with IMU mounted on foot in order to validate the efficiency of the proposed 
architecture based on non linear filters. EKF, CKF and CIF.   

 
d. EXPERIMENTAL TESTS. A real time application of the shoe-mounted inertial 
navigation system was tested [openshoe]. The system hardware is composed of: -a 
laptop PC-IMU Analog Device 16367-250 Hz frequency of accelerometers, 
gyroscopes and magnetometers — Stance-Still step detector and an assisted AUPT-
ZUPT based on “Direct Cubature Kalman filtering approach”.  
 
2nd approach for Pedestrian navigation system based on GNSS receiver: 
On the basis of previous results using CKF and CIF filtering algorithms, it is proposed 
then to apply the Gaussian Sum based CIF to the problem of Pedestrian navigation 
using a different nonlinear model instead of Foot-mounted IMU’s, the use of 
GPS/GLONASS receiver such as integrated on GALAXY Smartphone Tab3. The 
backup positioning system during GNSS missing is assumed to be GSM network based 
on base stations [61–62].   

 
Novel Gaussian Sum Information Filter 

Robust Gaussian Sum-Cubature Information Filter. This section describes the CIF 
algorithm, which uses CKF in an EIF framework. The CIF algorithm is summarized. 
The factorization of the error covariance matrix, evaluation of cubature points and 
propagated cubature points for the process model is required for CIF. Let the 
information state vector and information matrix be given by b yk|k−1 and Yk|k−1. 
The factorization of the inverse information matrix is required to evaluate S, which is 
required for cubature points propagation. 

  T
kkkkkk SSY 1/11/1

1
1/1 


     
In the measurement update of CIF, the first two steps involve the evaluation of 

propagated cubature points and the predicted measurement.  
The information state contribution and its associated information are explicit 

functions of the linearized Jacobian of the measurement model. But the CKF 
algorithm does not require the Jacobians for measurement update and hence it cannot 
be directly used in the EIF framework. However, it is possible to rewrite the CKF 
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update in the EIF framework. The predicted measurement can be given by the 
following approximations:    

  T
xkkxkkzz hPhP   1/1/,   (79) 

Then, we obtain the following expression :  
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The updated information state vector and information matrix for the CIF can be 
obtained by using Ik and ik from (eq.80) and (eq.81).  

 
 

 
FIGURE 20    Gaussian Sum Based Cubature Information Filter applied to  
                         Pedestrian Navigation State estimation Problem 

 
 
Thus, the Gaussian sum based CIF can be derived and applied to the model of 

pedestrian navigation system based on multiple sensors fusion. On the basis of the 
kinematic model given in the previous section and during multiple simulations in 
denied GNSS environment with Gaussian mixture noise, the following results have 
been carried out and observed on Fig.20. It is possible to observe that the Gaussian 
Sum based CIF algorithm is the best estimator able to track the true trajectory in the 
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North-East frame, in addition to different state estimation of the azimuth, the north 
distance and east distance. The Gaussian sum information filtering is more accurate 
and represents an alternative to all previous developed approaches.  

 
IRIDIUM SATELLITE BASED POSITIONING SYSTEM 

Iridium service provides real Telecommunication capabilities to users worldwide. 
Continuous global coverage is realized using 66 space vehicles (SVs), distributed 
among 6 planes in near circular orbits at 86.4deg inclination, orbiting at an  altitude of 
780km (much lower than the 20,000km GPS orbit altitude). A 31.6deg angle separates 
each co-rotating orbital plane, and the remaining 22deg angle separates the two planes 
at the seam of the constellation, where spacecraft are counter-rotating. Iridium 
spacecraft spend on average 10min in view of a given location on the surface of the 
earth, and circle the earth in a period IRI T of 100min 28s [9]. 
 

 
FIGURE 21   Iridium Satellite constellation around the earth (66 satellites) 

 
2. Short burst data — SBD geodata  

 The first tests have been observed during a week during all day in static mode in 
Algeria.  

 Then, a second test has been achieved in another Geographic area in Europe 
from Belgium, France to Spain in Dynamic mode, when a real tracking based on 
Iridium measurements has been realized. 
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Real results of IRIDIUM only based Positioning during GPS missing  
 

      
FIGURE 22    Static Iridium Localization during GPS missing-Circle center initialization-

Latitude-Longitude Plan  
 
 

STATIC TEST RESULTS: Iridium positions converge to the center of the circular zone 
which approximately 36m-467m the GPS location of the Tracker. The problem of 
increasing accuracy in the static mode could be solved by geometrical solution which 
leads with circle fitting algorithms on the basis of multiple measurements of Iridium 
location estimation. The accuracy achieved 36 meters instead of 1km (see. Fig.22).  
 
Method used in solving the initialization process of the circle center estimation: 
We consider the following 2D problem: given a set of n points Pi(xi;yi) (i = 1: : :n) find 
the center C(xc;yc) and the radius r of the circle that pass closest to all the points. The 
underlying principles of the proposed fitting method are to first compute an initial 
guess by averaging all the circles that can be built using all triplets of non- aligned 
points, and then to iteratively reduce the distance between the circle and the complete 
set of points using a minimization method. This induces the use of Gaussian Sum 
filters, each filter with its initialization. This solution is under Patent consideration 
for real industrial use.  

Let Pi(xi;yi), Pj(xj;yj) and Pk(xk;yk) be three points. Elaborate algorithms are 
used and applied, main important are: Iterative improvement, LEVENBERG-
MARQUARDT method which is a combination of the GAUSS-NEWTON and 
steepest descent methods (see Fig.22) [ under patent]. Robust estimation approach 
such as given in [14, 18, 19] are also investigated. 
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FIGURE 23    Dynamic Iridium Localization during GPS missing (Iridium Outliers-Impuslive noise) 

  
In static mode, the initialization is fixed to 10 minutes, receiving Iridium Short 

Burst data every 10 sec, which provides 60 measurements. On the basis of previous 
specialized researches, Gaussian sum filtering is the applied based on Cubature 
Kalman Filter Algorithm achieving accuracy equivalent to 36 meters.  

 
DYNAMIC TEST RESULTS: Iridium positions are delivered every 10sec with an average 
error of 1km during a very long trajectory from Belgium through France and to Spain. 
It is observed phenomena of outliers varying from 2km to 10km and in seven (07) 
cases superior than 100 km (high outliers). Those outliers are considered as impulsive 
measurement noises and in this case a Gaussian sum based nonlinear filters are 
proposed as an alternative to the problem discovered during multiple tests (see Fig.23).  
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It is a Multi-positioning system in denied GNSS environment. There is no Gaussian 
assumption on the measurement noise kw . The idea is to use the same kinematic 
model of 2D navigation and consider each iridium location measurement as an 
artificial beacon or virtual beacon. The measurement covariance matrix is time 
varying and is dependant of the C.E.P radius of each incoming iridium Geo 
Location data (Under Patent).   

 
 

2.8 General conclusion 
 

Novel forms of Gaussian mixture formulation based on EKF, SPKF, GHKF and CKF 
provide much better results and excellent convergence of estimation errors for 
position, velocity and attitude angle estimation in non Gaussian measurement 
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environment. These algorithms are recommended in presence of impulsive noises. 
Robust adaptive fading non Gaussian filters are a good solution in presence of 
interference at initialization step and during navigation. These algorithms are called 
“Robust” or Gaussian mixture Adaptive Non Linear Filters. Accurate estimation was 
resulted and much efficient integrated navigation system INS/GNSS has been 
developed. Decentralized design based on CIF and Gaussian Mixture synthesis is 
proposed as a fusion algorithm under severe conditions. Several applications are 
potential host for the proposed robust designs, such as: robot navigation, Ship 
navigation, aircraft navigation, UAV, pedestrian navigation, Iridium Satellites based 
positioning …etc.  
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